Simplifying Expressions
Example: x +1 + x -3
X2-4x+4 x -2
= x +1 + x -3
x2-4x+4 x -2
1) Factor the denominator and then find a common denominator.
= x+1 + (x-3) (x-2)
(x-2)(x-2) (x-2) (x-2)
2) Combine the fractions
= x+1+ (x-3)(x-2)
(x-2)(x-2)
3) Simplify
= 2x-2
x-2
Example: cosx – sinx
1-sinx cosx
= cosx – sinx
1-sinx cosx
1) Find a common denominator for both fractions
= cosx (cosx) – sinx (1-sinx)
(1-sinx)(cosx) cosx (1-sinx)
2) Combine the fractions
= cos2x – sinx(1-sinx)
(1-sinx)(cosx)
3) Simplify
= cos2x – sinx+sin2x
(1-sinx)(cosx)
4) Use the identity sin2x+cos2x = 1 in the numerator.
= 1-sinx
(1-sinx)(cosx)
5) Simplify
= 1
cosx
6) Use the reciprocal identity
= secx
Factoring
Example: 1 + cosx - sin2x
= 1 + cosx - sin2x
1) Use the identity sin2x + cos2x = 1 to substitute sin2x for (1-cos2x).
= 1 + cosx – (1 - cos2x)
2) Distribute the negative sign into the parenthesis.
= 1 + cosx – 1 + cos2x
3) Simplify
= cosx + cos2x
= cosx(1 + cosx)
Example: sec2x + tanx - 3
= sec2x + tanx - 3
1) Use the identity 1+tan2x = sec2x
= 1 + tan2x + tanx – 3
2) Simplify
= tan2x + tanx – 2
3) Factor
= (tanx + 2)(tanx – 1)
You can check if two expressions are equivalent by using your graphing calculator. Graph the two expressions, but change one of the expressions to the bouncing ball.
Homework: pg 487 # 1-7 odd, 15-43 odd
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment